

HYDRAULIX system

Hydraulically operated Fuel Injectors

Introduction

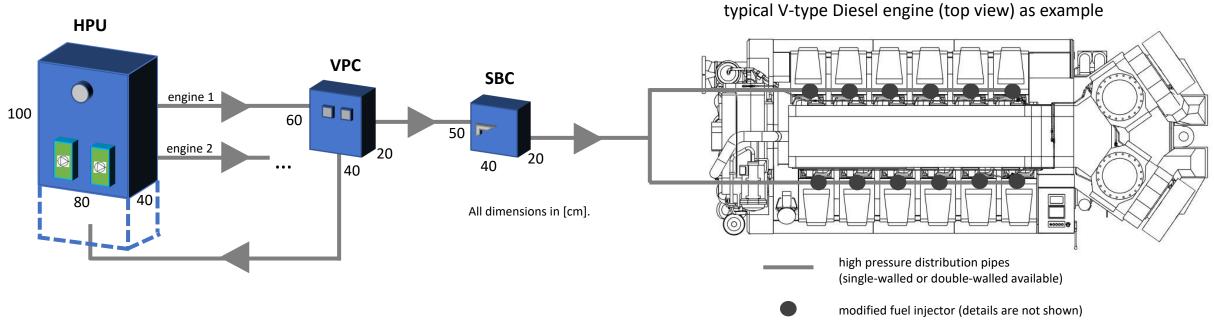
- founded 2020 in Gothenburg
- engineering experts focusing on the maritime and stationary energy transition
- the C-ENERGY HYDRAULIX system is a proven design
- providing emission compliance for existing Diesel engines
- robust and reliable fuel and emission saving solution
- verified functionality, performance and durability
- C-ENERGY Technologies provides also an **E.G.R.** system for reducing NO_x and can be installed on any possible marine or stationary application
- both **HYDRAULIX** and the **E.G.R.** system from C-ENERGY can be combined together

Description of the HYDRAULIX system

- when the engine is running and the HYDRAULIX system is installed, a constant hydraulic oil pressure is being applied to the fuel injector in order to avoid the spring bouncing and fuel dropping into the combustion chamber after the fuel pump is closed
- the fuel injector will be modified 1) hydraulic oil supply into the spring chamber and 2) fuel oil leakage opening will be closed; recommended to be done before a scheduled maintenance of the fuel injector
- with the improved function of the fuel valve through the HYDRAULIX system a better combustion is achieved especially outside the optimized MCR range
- the improved combustion is leading to a lower fuel oil consumption, less emissions as well an extended Time Between Overhaul (TBO) and an extended service life on engine parts
- works on 2-stroke and 4-stroke Diesel engines

HYDRAULIX – WORKING PRINCIPLE & TECHNICAL SETUP

Hydraulic Pump Unit (HPU)


- including oil tank underneath, operating and standby pump for redundancy, all electrical equipment; oil is the same as engine lubrication oil
- pump capacity can be chosen for multiple engine application if required

Variable Pressure Controller (VPC)

- this pressure control unit consists of a distribution block, proportionality valve and a current calculator
- calculation give the signal for the right pressure

Separation Block Cabinet (SBC)

- this cabinet needs to be installed as close as possible to the engine
- main task is to act as a shut-off device and a monitoring unit for the pressures

ARGUMENTS FOR C-ENERGY HYDRAULIX SYSTEM (1/4)

- a Standard Fuel Valve is designed to work at a fixed MCR around 85-100% depending on the application
- when running the engine in partial load, the poorer atomization of the fuel results in drips, coating and deposits of coke leading to a bad combustion
- this results in a high fuel consumption and worse emission values

=> Installing the C-ENERGY HYDRAULIX system will solve this problems

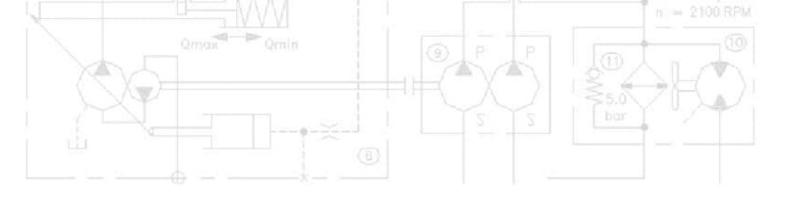
ARGUMENTS FOR C-ENERGY HYDRAULIX SYSTEM (2/4)

- DNV has issued a "Letter of No Objection" in principle for our HYDRAULIX system on Diesel engines
- no class relevant components will be changed or modified
- our customers will always be supported is case of any Class questions

2023-07-18

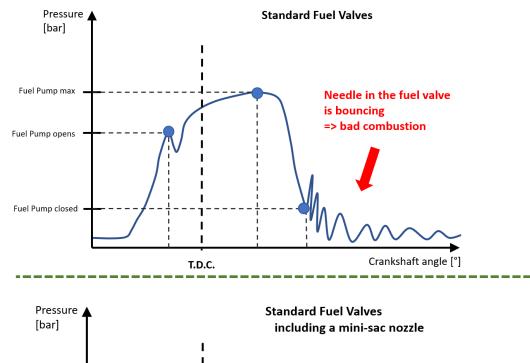
Public

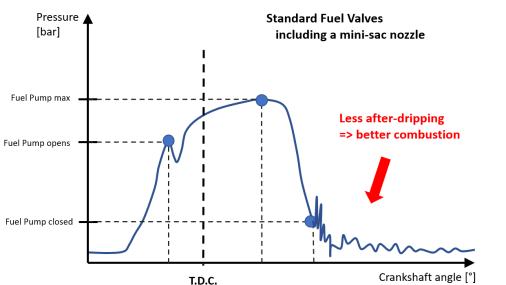
ARGUMENTS FOR C-ENERGY HYDRAULIX SYSTEM (3/4)

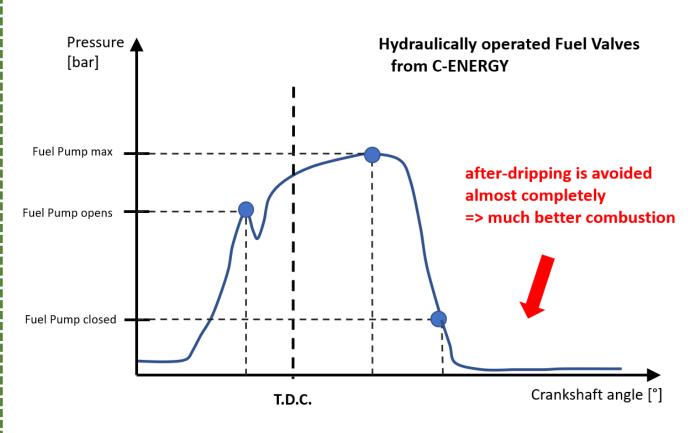

a comparison of the 3 pressure curves between

a Standard Fuel Valve,

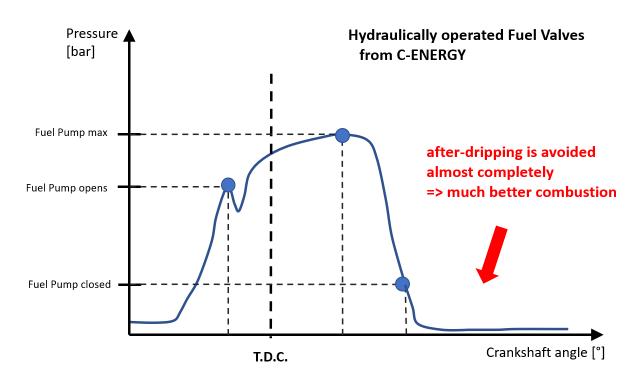
a Standard Fuel Valve with a mini-sac nozzle


and the hydraulically operated Fuel Valve from C-ENERGY shows,


that only the HYDRAULIX system leads to a better combustion resulting in less fuel consumption and lower emissions (curves are shown on the next slide)



ARGUMENTS FOR C-ENERGY HYDRAULIX SYSTEM (4/4)


Experience with this technology 1/3

Roll-On/Roll-Off cargo ship with 2x Pielstick 12V PC2.5 main engines (Diesel-Mechanic application)

Performance of the HYDRAULIX:

- High Fuel savings
- CO₂ reduction according to Fuel savings
- particles visibly reduced

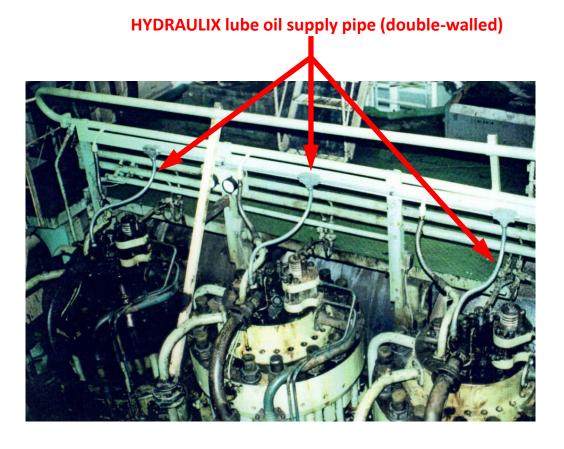
Experience with this technology 2/3

Business Case calculation with Fuel Savings (not considered: reduced need for maintenance & spare parts)	Unit	CONTAINER SHIP 812 TEU ME 1x MaK 9M43 8.4 MW, 4-stroke, 75%, 5.540 rh, North and Baltic Sea	CONTAINER SHIP 862 TEU ME 1x MaK 9M43C 8.5 MW, 4-stroke, 85%, 4.315 rh, North Sea	CONTAINER SHIP 2.272 TEU ME 3x Götaverken 58 MW, 2-stroke, xx%, 7.000 rh, world wide	COASTAL TANKER ME 1x 6 MW, 4-stroke, xx%, 5.000 rh, North and Baltic Sea	RO-RO FERRY ME 2x Pielstick PC 2.5 12 MW, 4-stroke, xx%, 4.600 rh, North and Baltic Sea
Input						
Date	[-]	24.02.2022	24.02.2022	24.02.2022	24.02.2022	24.02.2022
	comment	last 12 months average values	last 12 months average values	last 12 months average values	last 12 months average values	last 12 months average values
Fuel price / Bunker price Rotterdam for MGO 0,1% S ²	[USD / metric t]	622,50	622,50	622,50	622,50	622,50
Exchange rate USD to EUR ^{3 & 4}	[-]	0,8548	0,8548	0,8548	0,8548	0,8548
Fuel consumption per year	[t / year]	5.652	5.590	70.000	4.320	5.621
Fuel savings ¹	[%]	6	5	2	4	8
Investment for Fuel Saving product incl. Parts & Service (budget price)	[Euro]	160.000	160.000	485.000	155.000	330.000
Output						
Fuel price / Bunker price	[Euro / metric t]	532,11	532,11	532,11	532,11	532,11
Fuel costs per year	[Euro / year]	3.007.503	2.974.512	37.247.910	2.298.728	2.991.114
Fuel savings per year	[t / year]	339	280	1.400	173	450
Fuel costs savings per year	[Euro / year]	180.450	148.726	744.958	91.949	239.289
Payback / ROI	[years]	0,89	1,08	0,65	1,69	1,38

Depending one engine maker and setup; for more detailed information please fill out our Customer Data Sheet.

² Source: https://shipandbunker.com/

³ Source: https://www.oanda.com/currency-converter/de/?from=USD&to=EUR&amount=1


⁴ Source: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/eurofxref-graph-usd.en.html

Experience with this technology 3/3

HYDRAULIX installation on a 2-stroke Sulzer RND90 Diesel engine

Reference List 1/2

Why are all our references from the 1990s?

The original technical principle of the HYDRAULIX system was installed on **45 engines** from 1989 to 1995 where C-ENERGY founder Claes Jakobsson was testing and operating that product on several Pielstick marine engines at the time.

From 1996 this system was outsourced to a bigger company and they have installed around 80 systems. In total, more than 120 HYDRAULIX systems have been installed on different Diesel engines in the field. Due to competing interest with the OEM spare part sales, the system was shelved in 2001.

C-ENERGY has recognized the demand from the market to reduce fuel consumption due to upcoming emission regulations in 2021 and started with a technically upgraded HYDRAULIX system in order to save fuel and reduce emissions even for newer engine types.

Reference List 2/2

Project	Туре	Company	Country	Name	Engines		Fuel	Installation
No.			_		Amount	Туре	type	date
▼	▼	▼	▼	▼	▼	▼	▼	↓ 1
1	Marine	Frigomaris GmbH	Germany	SNOW DRIFT	1	Sulzer 8RND90	IF360	1989
2	Marine	Stena Marine Management AB	Sweden	STENA FREIGHTER	2	Pielstick 12PC2.5V	IF180	1990
3	Marine	Nordstrom & Thulin	Sweden	GRAIP	2	Pielstick 12PC2.5V	IF180	1991
4	Marine	Wallenius Lines AB	Sweden	ANIARA	2	Pielstick 16PC2.5V	IF180	1991
5	Stationary	Gotlands Energieverk K. S. V.	Sweden	Power Plant	2	Pielstick 8PC4 .2V	IF180	1991
6	Marine	Northern Marine Managemenf Ltd.	UK	KYOWA	1	Sulzer 6RND68M	IF360	1991
7	Marine	Scandi Line A/S	Norway	SANDEFJORD	2	Pielstick 12PC2.0V	IF180	1992
8	Marine	Stena Marine Management AB	Sweden	STENA CARRIER	2	Pielstick 12PC2.5V	IF180	1992
9	Marine	Stena Marine Management AB	Sweden	STENA NORDICA	4	Pielstick 12PC2.5V	IF180	1992
10	Marine	DFDS A/S	Denmark	PRINCE of SCANDINAVIA	4	Pielstick 12PC3.0V	IF360	1992
11	Marine	Star Cruise	Malaysia	STAR AQUARIUS	2	Sulzer 9ZAL40S	IF180	1992
12	Marine	Ferm Int. Ship Management	Sweden	UNITED STAR	2	Wichman 9AXAG	IF180	1992
13	Marine	The National Swedish Adm. of Shipping & Navigation	Sweden	SCANDIA	2	Hedemora VI 6A/I 2	MDO	1993
14	Stationary	Bermuda Electric Co, Ltd	Bermuda	Power Plant	1	Pielstick 18PC3. OV	Hago	1993
15	Stationary	PT Indocement Tungal Prakarssa	Indonesia	Power Plant	9	Pielstick 18PC4.0V	IF180	1993
16	Marine	Barber Ship Management A/S	Norway	TAPIOLA	1	Sulzer 9RND90M	IF360	1993
17	Marine	Mediterranean Shipping Company	Italy	MSC CARLA	3	Götaverken 850/1700 VGS	IF360	1994
18	Marine	Leif Hoegh & Co. A/S	Norway	HOEGH CAIRN	1	MAN 8KSZ70/125	IF360	1994
19	Marine	DFDS A/S	Denmark	HAMBURG	2	Stork 20TM410	IF360	1995
					45			

C-ENERGY SOLUTIONS IN A NUTSHELL

The C-ENERGY Technologies HYDRAULIX system helps ...

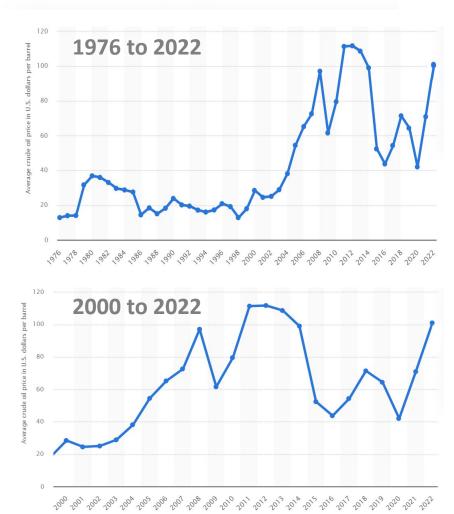
- better combustion
- reduction of fuel consumption
- emission improvements
- reduced costs for spare parts
- reduced service hours at maintenance

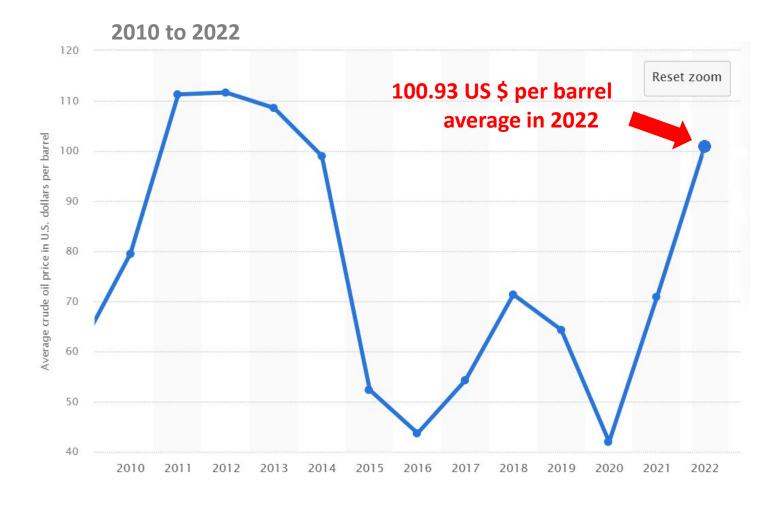
- to achieve a better and cleaner combustion
- → for a short amortization and fuel cost savings
- → for unrestricted/unlimited operation performance
- → extended service life of spare parts and engine
- → due to extended maintenance intervals

C-ENERGYS MISSION STATEMENT

"Preserving the viability of the planet is the task and responsibility of the generation acting responsibly now. Our customers benefit from our advanced HYDRAULIX system and can provide their individual contribution to the necessary energy transition within the shipping industry."

"Its time to act!"

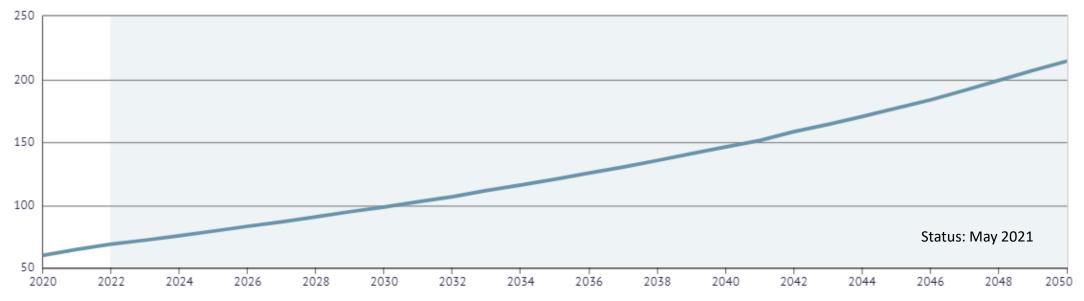

BACKUP



Average annual Brent crude oil price

© Statista 2023 🏲

(in U.S. dollars per barrel)


What is the future price of Brent crude oil?

The current EIA forecast that Brent crude oil prices will average **74.95 US \$ / barrel** in 2022. Oil prices are rising due to an increase in demand and a decrease in supply.

EIA: Long-Term Brent Crude Oil Price Projection

US\$ per barrel

What is the price of MGO in Rotterdam?

Rotterdam MGO

October 2021: 690 \$/t 610 €/t November 2021: 700 \$/t 603 €/t December 2021: 620 \$/t 540 €/t

January 2022: 770 \$/t 680 €/t

January 2023: 890 \$/t 817 €/t

What is the average fuel price over the last year in Rotterdam?

	High	Low	Average
Global 20 Ports	\$597.00	\$381.00	\$458.50
Rotterdam	\$559.00	\$353.00	\$423.50
Brent	\$746.07	\$457.75	\$567.50

High	Low	Average
\$774.00	\$493.50	\$578.50
\$731.50	\$454.50	\$542.50
\$746.07	\$457.75	\$567.50

High	Low	Average
\$904.50	\$556.00	\$670.00
\$866.00	\$490.00	\$622.50
\$746.07	\$457.75	\$567.50

Source: https://shipandbunker.com/

CONTACT

Manufacturer

C-ENERGY Technologies AB

Claes Jakobsson Gothenburg, Sweden

Promotion, Sales and Tendering

Alternative Energy Solutions

AES by DTS
Dr. Thomas Spindler
Augsburg, Germany

Email: aes infos@gmx.de / aes sales@gmx.de

Web: www.aes-dts.de / www.aes-dts.com

Disclaimer

All data provided by C-ENERGY in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.